跳到主要内容

16 篇博文 含有标签「模拟」

查看所有标签

· 阅读需 3 分钟

1、题干

骑士在一张 n x n 的棋盘上巡视。在 有效 的巡视方案中,骑士会从棋盘的 左上角 出发,并且访问棋盘上的每个格子 恰好一次

给你一个 n x n 的整数矩阵 grid ,由范围 [0, n * n - 1] 内的不同整数组成,其中 grid[row][col] 表示单元格 (row, col) 是骑士访问的第 grid[row][col] 个单元格。骑士的行动是从下标 0 开始的。

如果 grid 表示了骑士的有效巡视方案,返回 true;否则返回 false

注意,骑士行动时可以垂直移动两个格子且水平移动一个格子,或水平移动两个格子且垂直移动一个格子。下图展示了骑士从某个格子出发可能的八种行动路线。

 

示例 1:

输入:grid = [[0,11,16,5,20],[17,4,19,10,15],[12,1,8,21,6],[3,18,23,14,9],[24,13,2,7,22]]
输出:true
解释:grid 如上图所示,可以证明这是一个有效的巡视方案。

示例 2:

输入:grid = [[0,3,6],[5,8,1],[2,7,4]]
输出:false
解释:grid 如上图所示,考虑到骑士第 7 次行动后的位置,第 8 次行动是无效的。

 

提示:

  • n == grid.length == grid[i].length
  • 3 <= n <= 7
  • 0 <= grid[row][col] < n * n
  • grid 中的所有整数 互不相同

2、思路

从左上角开始 DFS 遍历,如果能完成遍历则说明巡视方案有效

3、代码

function checkValidGrid(grid: number[][]): boolean {
let vis = 0;
const dirs = [[-2, -1], [2, 1], [-2, 1], [2, -1], [-1, -2], [1, 2], [-1, 2], [1, -2]];
const t = grid.length * grid[0].length;

function dfs(r: number, c: number) {
vis++;
if (grid[r][c] === t - 1) return;

for (const [dr, dc] of dirs) {
if (grid[r + dr]?.at(c + dc) === grid[r][c] + 1) {
dfs(r + dr, c + dc);
break;
}
}
}

dfs(0, 0);

return vis === t;
};

4、复杂度

  • 时间复杂度: O(n2)O(n^2)
  • 空间复杂度: O(n2)O(n^2)

5、执行结果

image.png

· 阅读需 7 分钟

1、题干

你正在经营一座摩天轮,该摩天轮共有 4 个座舱 ,每个座舱 最多可以容纳 4 位游客 。你可以 逆时针 轮转座舱,但每次轮转都需要支付一定的运行成本 runningCost 。摩天轮每次轮转都恰好转动 1 / 4 周。

给你一个长度为 n 的数组 customerscustomers[i] 是在第 i 次轮转(下标从 0 开始)之前到达的新游客的数量。这也意味着你必须在新游客到来前轮转 i 次。每位游客在登上离地面最近的座舱前都会支付登舱成本 boardingCost ,一旦该座舱再次抵达地面,他们就会离开座舱结束游玩。

你可以随时停下摩天轮,即便是 在服务所有游客之前 。如果你决定停止运营摩天轮,为了保证所有游客安全着陆,将免费进行所有后续轮转 。注意,如果有超过 4 位游客在等摩天轮,那么只有 4 位游客可以登上摩天轮,其余的需要等待 下一次轮转

返回最大化利润所需执行的 最小轮转次数 。 如果不存在利润为正的方案,则返回 -1

 

示例 1:

输入:customers = [8,3], boardingCost = 5, runningCost = 6
输出:3
解释:座舱上标注的数字是该座舱的当前游客数。
1. 8 位游客抵达,4 位登舱,4 位等待下一舱,摩天轮轮转。当前利润为 4 * $5 - 1 * $6 = $14 。
2. 3 位游客抵达,4 位在等待的游客登舱,其他 3 位等待,摩天轮轮转。当前利润为 8 * $5 - 2 * $6 = $28 。
3. 最后 3 位游客登舱,摩天轮轮转。当前利润为 11 * $5 - 3 * $6 = $37 。
轮转 3 次得到最大利润,最大利润为 $37 。

示例 2:

输入:customers = [10,9,6], boardingCost = 6, runningCost = 4
输出:7
解释:
1. 10 位游客抵达,4 位登舱,6 位等待下一舱,摩天轮轮转。当前利润为 4 * $6 - 1 * $4 = $20 。
2. 9 位游客抵达,4 位登舱,11 位等待(2 位是先前就在等待的,9 位新加入等待的),摩天轮轮转。当前利润为 8 * $6 - 2 * $4 = $40 。
3. 最后 6 位游客抵达,4 位登舱,13 位等待,摩天轮轮转。当前利润为 12 * $6 - 3 * $4 = $60 。
4. 4 位登舱,9 位等待,摩天轮轮转。当前利润为 * $6 - 4 * $4 = $80 。
5. 4 位登舱,5 位等待,摩天轮轮转。当前利润为 20 * $6 - 5 * $4 = $100 。
6. 4 位登舱,1 位等待,摩天轮轮转。当前利润为 24 * $6 - 6 * $4 = $120 。
7. 1 位登舱,摩天轮轮转。当前利润为 25 * $6 - 7 * $4 = $122 。
轮转 7 次得到最大利润,最大利润为$122 。

示例 3:

输入:customers = [3,4,0,5,1], boardingCost = 1, runningCost = 92
输出:-1
解释:
1. 3 位游客抵达,3 位登舱,0 位等待,摩天轮轮转。当前利润为 3 * $1 - 1 * $92 = -$89 。
2. 4 位游客抵达,4 位登舱,0 位等待,摩天轮轮转。当前利润为 7 * $1 - 2 * $92 = -$177 。
3. 0 位游客抵达,0 位登舱,0 位等待,摩天轮轮转。当前利润为 7 * $1 - 3 * $92 = -$269 。
4. 5 位游客抵达,4 位登舱,1 位等待,摩天轮轮转。当前利润为 11 * $1 - 4 * $92 = -$357 。
5. 1 位游客抵达,2 位登舱,0 位等待,摩天轮轮转。当前利润为 13 * $1 - 5 * $92 = -$447 。
利润永不为正,所以返回 -1 。

 

提示:

  • n == customers.length
  • 1 <= n <= 105
  • 0 <= customers[i] <= 50
  • 1 <= boardingCost, runningCost <= 100

2、思路

可以用队列思路模拟,只要 customers 没有遍历完或者队列 queue 中仍有游客,就转动摩天轮并计算当前利润 p,如果当前利润比之前最大利润 mp 更大,则更新最大利润 mp 和最小次数 ans

3、代码

function minOperationsMaxProfit(customers: number[], boardingCost: number, runningCost: number): number {
let p = 0, mp = 0, ans = -1;

for (let i = 0, queue = 0; i < customers.length || queue > 0; i++) {
if (i < customers.length) queue += customers[i];

const k = queue < 4 ? queue : 4;
queue -= k;
p += (k * boardingCost - runningCost);

if (p <= mp) continue;

mp = p;
ans = i + 1;
}

return ans;
};

4、复杂度

  • 时间复杂度:O(n)O(n)
  • 空间复杂度:O(1)O(1)

5、执行结果

image.png

· 阅读需 3 分钟

1、题干

给你一个非负整数数组 nums 。在一步操作中,你必须:

  • 选出一个正整数 xx 需要小于或等于 nums最小非零 元素。
  • nums 中的每个正整数都减去 x

返回使 nums 中所有元素都等于 0 需要的 最少 操作数。

 

示例 1:

输入:nums = [1,5,0,3,5]
输出:3
解释:
第一步操作:选出 x = 1 ,之后 nums = [0,4,0,2,4] 。
第二步操作:选出 x = 2 ,之后 nums = [0,2,0,0,2] 。
第三步操作:选出 x = 2 ,之后 nums = [0,0,0,0,0] 。

示例 2:

输入:nums = [0]
输出:0
解释:nums 中的每个元素都已经是 0 ,所以不需要执行任何操作。

 

提示:

  • 1 <= nums.length <= 100
  • 0 <= nums[i] <= 100

2、思路1

根据题目描述,每一步都消除了所有最小的正整数,因此最少步数就是数组 nums 去重后正整数的个数。

第一个思路是:排序后统计去重正整数个数

3、代码

function minimumOperations(nums: number[]): number {
nums.sort((a, b) => a - b);

let step = 0;
for (let i = 0; i < nums.length; i++) {
if (nums[i] && nums[i] !== nums[i - 1]) step++;
}

return step;
};

4、复杂度

  • 时间复杂度:O(nlogn)O(n \log n)
  • 空间复杂度:O(logn)O(\log n)

5、执行结果

image.png

6、思路2

哈希去重统计正整数的个数

7、代码

function minimumOperations(nums: number[]): number {
const set = new Set(nums);
return set.size - (set.has(0) ? 1 : 0);
};

或者这样

function minimumOperations(nums: number[]): number {
return new Set(nums.filter(Boolean)).size;
};

8、复杂度

  • 时间复杂度:O(n)O(n)
  • 空间复杂度:O(n)O(n)

9、执行结果

image.png

· 阅读需 2 分钟

1、题干

存在一种仅支持 4 种操作和 1 个变量 X 的编程语言:

  • ++XX++ 使变量 X 的值 1
  • --XX-- 使变量 X 的值 1

最初,X 的值是 0

给你一个字符串数组 operations ,这是由操作组成的一个列表,返回执行所有操作后, X最终值

 

示例 1:

输入:operations = ["--X","X++","X++"]
输出:1
解释:操作按下述步骤执行:
最初,X = 0
--X:X 减 1 ,X = 0 - 1 = -1
X++:X 加 1 ,X = -1 + 1 = 0
X++:X 加 1 ,X = 0 + 1 = 1

示例 2:

输入:operations = ["++X","++X","X++"]
输出:3
解释:操作按下述步骤执行:
最初,X = 0
++X:X 加 1 ,X = 0 + 1 = 1
++X:X 加 1 ,X = 1 + 1 = 2
X++:X 加 1 ,X = 2 + 1 = 3

示例 3:

输入:operations = ["X++","++X","--X","X--"]
输出:0
解释:操作按下述步骤执行:
最初,X = 0
X++:X 加 1 ,X = 0 + 1 = 1
++X:X 加 1 ,X = 1 + 1 = 2
--X:X 减 1 ,X = 2 - 1 = 1
X--:X 减 1 ,X = 1 - 1 = 0

 

提示:

  • 1 <= operations.length <= 100
  • operations[i] 将会是 "++X""X++""--X""X--"

2、思路

模拟

3、代码

function finalValueAfterOperations(operations: string[]): number {
let ans = 0;
for (const o of operations) {
ans += o.includes('+') ? 1 : -1;
}
return ans;
};

4、复杂度

  • 时间复杂度:O(n)O(n)
  • 空间复杂度:O(1)O(1)

5、执行结果

image.png

· 阅读需 3 分钟

1、题干

给你一个下标从 0 开始的整数数组 nums ,其长度是 2 的幂。

nums 执行下述算法:

  1. n 等于 nums 的长度,如果 n == 1终止 算法过程。否则,创建 一个新的整数数组 newNums ,新数组长度为 n / 2 ,下标从 0 开始。
  2. 对于满足 0 <= i < n / 2 的每个 偶数 下标 i ,将 newNums[i] 赋值min(nums[2 * i], nums[2 * i + 1])
  3. 对于满足 0 <= i < n / 2 的每个 奇数 下标 i ,将 newNums[i] 赋值max(nums[2 * i], nums[2 * i + 1])
  4. newNums 替换 nums
  5. 从步骤 1 开始 重复 整个过程。

执行算法后,返回 nums 中剩下的那个数字。

 

示例 1:

输入:nums = [1,3,5,2,4,8,2,2]
输出:1
解释:重复执行算法会得到下述数组。
第一轮:nums = [1,5,4,2]
第二轮:nums = [1,4]
第三轮:nums = [1]
1 是最后剩下的那个数字,返回 1 。

示例 2:

输入:nums = [3]
输出:3
解释:3 就是最后剩下的数字,返回 3 。

 

提示:

  • 1 <= nums.length <= 1024
  • 1 <= nums[i] <= 109
  • nums.length2 的幂

2、思路

递归模拟,思路和实现比其他方式相对简单点

3、代码

function minMaxGame(nums: number[]): number {
if (nums.length === 1) return nums[0];

nums = nums.slice(0, nums.length / 2).map((v, i) => {
return (i % 2 ? Math.max : Math.min)(nums[2 * i], nums[2 * i + 1]);
});

return minMaxGame(nums);
};

4、复杂度

  • 时间复杂度:O(n)O(n)
  • 空间复杂度:O(n)O(n)

5、执行结果

image.png

· 阅读需 7 分钟

1、题干

给你一个偶数 n​​​​​​ ,已知存在一个长度为 n 的排列 perm ,其中 perm[i] == i​(下标 从 0 开始 计数)。

一步操作中,你将创建一个新数组 arr ,对于每个 i

  • 如果 i % 2 == 0 ,那么 arr[i] = perm[i / 2]
  • 如果 i % 2 == 1 ,那么 arr[i] = perm[n / 2 + (i - 1) / 2]

然后将 arr​​ 赋值​​给 perm

要想使 perm 回到排列初始值,至少需要执行多少步操作?返回最小的 非零 操作步数。

 

示例 1:

输入:n = 2
输出:1
解释:最初,perm = [0,1]
第 1 步操作后,perm = [0,1]
所以,仅需执行 1 步操作

示例 2:

输入:n = 4
输出:2
解释:最初,perm = [0,1,2,3]
第 1 步操作后,perm = [0,2,1,3]
第 2 步操作后,perm = [0,1,2,3]
所以,仅需执行 2 步操作

示例 3:

输入:n = 6
输出:4

 

提示:

  • 2 <= n <= 1000
  • n​​​​​​ 是一个偶数

2、思路1

根据题意模拟

3、代码

function reinitializePermutation(n: number): number {
let perm = new Array(n).fill(0).map((v, i) => i);

for (let ans = 1; ans; ans++) {
let valid = true, arr = new Array(n).fill(0);

for (let i = 0; i < n; i++) {
if (i % 2 === 0) arr[i] = perm[i / 2];
else arr[i] = perm[n / 2 + (i - 1) / 2];

if (arr[i] !== i) valid = false;
}

perm = arr;
if (valid) return ans;
}

return -1;
};

4、复杂度

  • 时间复杂度:O(n2)O(n^2)
  • 空间复杂度:O(n)O(n)

5、执行结果

image.png

6、思路2

数据量不大,不打表可惜了

7、代码

function reinitializePermutation(n: number): number {
const nums = [1, 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 28, 5, 10, 12, 36, 12, 20, 14, 12, 23, 21, 8, 52, 20, 18, 58, 60, 6, 12, 66, 22, 35, 9, 20, 30, 39, 54, 82, 8, 28, 11, 12, 10, 36, 48, 30, 100, 51, 12, 106, 36, 36, 28, 44, 12, 24, 110, 20, 100, 7, 14, 130, 18, 36, 68, 138, 46, 60, 28, 42, 148, 15, 24, 20, 52, 52, 33, 162, 20, 83, 156, 18, 172, 60, 58, 178, 180, 60, 36, 40, 18, 95, 96, 12, 196, 99, 66, 84, 20, 66, 90, 210, 70, 28, 15, 18, 24, 37, 60, 226, 76, 30, 29, 92, 78, 119, 24, 162, 84, 36, 82, 50, 110, 8, 16, 36, 84, 131, 52, 22, 268, 135, 12, 20, 92, 30, 70, 94, 36, 60, 136, 48, 292, 116, 90, 132, 42, 100, 60, 102, 102, 155, 156, 12, 316, 140, 106, 72, 60, 36, 69, 30, 36, 132, 21, 28, 10, 147, 44, 346, 348, 36, 88, 140, 24, 179, 342, 110, 36, 183, 60, 156, 372, 100, 84, 378, 14, 191, 60, 42, 388, 88, 130, 156, 44, 18, 200, 60, 108, 180, 204, 68, 174, 164, 138, 418, 420, 138, 40, 60, 60, 43, 72, 28, 198, 73, 42, 442, 44, 148, 224, 20, 30, 12, 76, 72, 460, 231, 20, 466, 66, 52, 70, 180, 156, 239, 36, 66, 48, 243, 162, 490, 56, 60, 105, 166, 166, 251, 100, 156, 508, 9, 18, 204, 230, 172, 260, 522, 60, 40, 253, 174, 60, 212, 178, 210, 540, 180, 36, 546, 60, 252, 39, 36, 556, 84, 40, 562, 28, 54, 284, 114, 190, 220, 144, 96, 246, 260, 12, 586, 90, 196, 148, 24, 198, 299, 25, 66, 220, 303, 84, 276, 612, 20, 154, 618, 198, 33, 500, 90, 72, 45, 210, 28, 84, 210, 64, 214, 28, 323, 290, 30, 652, 260, 18, 658, 660, 24, 36, 308, 74, 60, 48, 180, 676, 48, 226, 22, 68, 76, 156, 230, 30, 276, 40, 58, 700, 36, 92, 300, 708, 78, 55, 60, 238, 359, 51, 24, 140, 121, 486, 56, 244, 84, 330, 246, 36, 371, 148, 246, 318, 375, 50, 60, 756, 110, 380, 36, 24, 348, 384, 16, 772, 20, 36, 180, 70, 252, 52, 786, 262, 84, 60, 52, 796, 184, 66, 90, 132, 268, 404, 270, 270, 324, 126, 12, 820, 411, 20, 826, 828, 92, 168, 332, 90, 419, 812, 70, 156, 330, 94, 396, 852, 36, 428, 858, 60, 431, 172, 136, 390, 132, 48, 300, 876, 292, 55, 882, 116, 443, 21, 270, 414, 356, 132, 140, 104, 42, 180, 906, 300, 91, 410, 60, 390, 153, 102, 420, 180, 102, 464, 126, 310, 40, 117, 156, 940, 220, 36, 946, 36, 316, 68, 380, 140, 204, 155, 318, 96, 483, 72, 194, 138, 60, 488, 110, 36, 491, 196, 138, 154, 495, 30, 396, 332, 36];
return nums[n / 2 - 1];
}

8、复杂度

  • 时间复杂度:O(1)O(1)
  • 空间复杂度:O(n)O(n)

9、执行结果

image.png

10、思路3

基于 n 是偶数的前提可以尝试寻找操作规律。每次操作都是按固定规则分别整体移动偶数下标和奇数下标的数字,假设一次操作为一个周期,可以猜测,复原时所有数字经过的操作周期相同,因此可以只考察数字 1 复原所需的步数。(仅猜测,不会证明)

实际编码则是根据题中所给操作规则 arr[i] = perm[i / 2]arr[i] = perm[n / 2 + (i - 1) / 2] 推断数字 1 的变化。假设 j 为数字 1 当前所处位置,则 j 下一次所处位置存在以下2种情况:

  • 2 * j < n - 1j = 2 * j
  • 2 * j >= n - 1j = 2 * j - n + 1

11、代码

function reinitializePermutation(n: number): number {
let ans = 0;

for (let j = 1; !(ans && j === 1); ans++) {
if (2 * j >= n - 1) j = 2 * j - n + 1;
else j = 2 * j;
}

return ans;
}

12、复杂度

  • 时间复杂度:O(n)O(n)
  • 空间复杂度:O(1)O(1)

13、执行结果

image.png

· 阅读需 2 分钟

1、题干

给你一个正整数 num ,请你统计并返回 小于或等于 num 且各位数字之和为 偶数 的正整数的数目。

正整数的 各位数字之和 是其所有位上的对应数字相加的结果。

 

示例 1:

输入:num = 4
输出:2
解释:
只有 2 和 4 满足小于等于 4 且各位数字之和为偶数。

示例 2:

输入:num = 30
输出:14
解释:
只有 14 个整数满足小于等于 30 且各位数字之和为偶数,分别是:
2、4、6、8、11、13、15、17、19、20、22、24、26 和 28 。

 

提示:

  • 1 <= num <= 1000

2、思路

根据题意模拟

3、代码

function countEven(num: number): number {
let ans = 0;
for (let n = 1; n <= num; n++) {
for (let k = n, sum = 0; k; k = k / 10 >> 0) {
sum += k % 10;
if (k < 10 && sum % 2 === 0) ans += 1;
}
}
return ans;
};

4、复杂度

  • 时间复杂度:O(nlogn)O(nlogn)
  • 空间复杂度:O(1)O(1)

5、执行结果

image.png

· 阅读需 7 分钟

1、题干

给你一个二维整数数组 orders ,其中每个 orders[i] = [pricei, amounti, orderTypei] 表示有 amounti 笔类型为 orderTypei 、价格为 pricei 的订单。

订单类型 orderTypei 可以分为两种:

  • 0 表示这是一批采购订单 buy
  • 1 表示这是一批销售订单 sell

注意,orders[i] 表示一批共计 amounti 笔的独立订单,这些订单的价格和类型相同。对于所有有效的 i ,由 orders[i] 表示的所有订单提交时间均早于 orders[i+1] 表示的所有订单。

存在由未执行订单组成的 积压订单 。积压订单最初是空的。提交订单时,会发生以下情况:

  • 如果该订单是一笔采购订单 buy ,则可以查看积压订单中价格 最低 的销售订单 sell 。如果该销售订单 sell 的价格 低于或等于 当前采购订单 buy 的价格,则匹配并执行这两笔订单,并将销售订单 sell 从积压订单中删除。否则,采购订单 buy 将会添加到积压订单中。
  • 反之亦然,如果该订单是一笔销售订单 sell ,则可以查看积压订单中价格 最高 的采购订单 buy 。如果该采购订单 buy 的价格 高于或等于 当前销售订单 sell 的价格,则匹配并执行这两笔订单,并将采购订单 buy 从积压订单中删除。否则,销售订单 sell 将会添加到积压订单中。

输入所有订单后,返回积压订单中的 订单总数 。由于数字可能很大,所以需要返回对 109 + 7 取余的结果。

 

示例 1:

输入:orders = [[10,5,0],[15,2,1],[25,1,1],[30,4,0]]
输出:6
解释:输入订单后会发生下述情况:
- 提交 5 笔采购订单,价格为 10 。没有销售订单,所以这 5 笔订单添加到积压订单中。
- 提交 2 笔销售订单,价格为 15 。没有采购订单的价格大于或等于 15 ,所以这 2 笔订单添加到积压订单中。
- 提交 1 笔销售订单,价格为 25 。没有采购订单的价格大于或等于 25 ,所以这 1 笔订单添加到积压订单中。
- 提交 4 笔采购订单,价格为 30 。前 2 笔采购订单与价格最低(价格为 15)的 2 笔销售订单匹配,从积压订单中删除这 2 笔销售订单。第 3 笔采购订单与价格最低的 1 笔销售订单匹配,销售订单价格为 25 ,从积压订单中删除这 1 笔销售订单。积压订单中不存在更多销售订单,所以第 4 笔采购订单需要添加到积压订单中。
最终,积压订单中有 5 笔价格为 10 的采购订单,和 1 笔价格为 30 的采购订单。所以积压订单中的订单总数为 6 。

示例 2:

输入:orders = [[7,1000000000,1],[15,3,0],[5,999999995,0],[5,1,1]]
输出:999999984
解释:输入订单后会发生下述情况:
- 提交 109 笔销售订单,价格为 7 。没有采购订单,所以这 109 笔订单添加到积压订单中。
- 提交 3 笔采购订单,价格为 15 。这些采购订单与价格最低(价格为 7 )的 3 笔销售订单匹配,从积压订单中删除这 3 笔销售订单。
- 提交 999999995 笔采购订单,价格为 5 。销售订单的最低价为 7 ,所以这 999999995 笔订单添加到积压订单中。
- 提交 1 笔销售订单,价格为 5 。这笔销售订单与价格最高(价格为 5 )的 1 笔采购订单匹配,从积压订单中删除这 1 笔采购订单。
最终,积压订单中有 (1000000000-3) 笔价格为 7 的销售订单,和 (999999995-1) 笔价格为 5 的采购订单。所以积压订单中的订单总数为 1999999991 ,等于 999999984 % (109 + 7) 。

 

提示:

  • 1 <= orders.length <= 105
  • orders[i].length == 3
  • 1 <= pricei, amounti <= 109
  • orderTypei01

2、思路

根据题意模拟,使用优先队列存储销售订单和采购订单

3、代码

function getNumberOfBacklogOrders(orders: number[][]): number {
const bpq = new PriorityQueue({ compare: (a, b) => b.price - a.price });
const spq = new PriorityQueue({ compare: (a, b) => a.price - b.price });

for (let [price, amount, type] of orders) {
if (type === 0) {
while (spq.size() && amount > 0) {
const o = spq.front();
if (o.price > price) break;
amount -= o.amount;
if (amount >= 0) spq.dequeue();
else o.amount = -amount;
}

if (amount > 0) bpq.enqueue({ price, amount });
} else {
while (bpq.size() && amount > 0) {
const o = bpq.front();
if (o.price < price) break;
amount -= o.amount;
if (amount >= 0) bpq.dequeue();
else o.amount = -amount;
}

if (amount > 0) spq.enqueue({ price, amount });
}
}

let ans = 0, M = 1e9 + 7;
while (bpq.size()) {
const o = bpq.dequeue();
ans = (ans + o.amount) % M;
}

while (spq.size()) {
const o = spq.dequeue();
ans = (ans + o.amount) % M;
}

return ans;
};

4、复杂度

  • 时间复杂度:o(nlogn)o(n*logn)
  • 空间复杂度:o(n)o(n)

5、执行结果

image.png

· 阅读需 2 分钟

1、题干

复数 可以用字符串表示,遵循 "实部+虚部i" 的形式,并满足下述条件:

  • 实部 是一个整数,取值范围是 [-100, 100]
  • 虚部 也是一个整数,取值范围是 [-100, 100]
  • i2 == -1

给你两个字符串表示的复数 num1num2 ,请你遵循复数表示形式,返回表示它们乘积的字符串。

 

示例 1:

输入:num1 = "1+1i", num2 = "1+1i"
输出:"0+2i"
解释:(1 + i) * (1 + i) = 1 + i2 + 2 * i = 2i ,你需要将它转换为 0+2i 的形式。

示例 2:

输入:num1 = "1+-1i", num2 = "1+-1i"
输出:"0+-2i"
解释:(1 - i) * (1 - i) = 1 + i2 - 2 * i = -2i ,你需要将它转换为 0+-2i 的形式。

 

提示:

  • num1num2 都是有效的复数表示。

2、解题思路

使用正则表达式匹配出所有整数再进行计算

3、代码

var complexNumberMultiply = function (num1, num2) {
const [n1, n2, n3, n4] = (num1 + num2).match(/-?\d+/g).map((n) => +n);
return `${n1 * n3 - n2 * n4}+${n1 * n4 + n2 * n3}i`;
};

4、执行结果

image.png

· 阅读需 3 分钟

1、题干

用一个大小为 m x n 的二维网格 grid 表示一个箱子。你有 n 颗球。箱子的顶部和底部都是开着的。

箱子中的每个单元格都有一个对角线挡板,跨过单元格的两个角,可以将球导向左侧或者右侧。

  • 将球导向右侧的挡板跨过左上角和右下角,在网格中用 1 表示。
  • 将球导向左侧的挡板跨过右上角和左下角,在网格中用 -1 表示。

在箱子每一列的顶端各放一颗球。每颗球都可能卡在箱子里或从底部掉出来。如果球恰好卡在两块挡板之间的 "V" 形图案,或者被一块挡导向到箱子的任意一侧边上,就会卡住。

返回一个大小为 n 的数组 answer ,其中 answer[i] 是球放在顶部的第 i 列后从底部掉出来的那一列对应的下标,如果球卡在盒子里,则返回 -1

 

示例 1:

输入:grid = [[1,1,1,-1,-1],[1,1,1,-1,-1],[-1,-1,-1,1,1],[1,1,1,1,-1],[-1,-1,-1,-1,-1]]
输出:[1,-1,-1,-1,-1]
解释:示例如图:
b0 球开始放在第 0 列上,最终从箱子底部第 1 列掉出。
b1 球开始放在第 1 列上,会卡在第 2、3 列和第 1 行之间的 "V" 形里。
b2 球开始放在第 2 列上,会卡在第 2、3 列和第 0 行之间的 "V" 形里。
b3 球开始放在第 3 列上,会卡在第 2、3 列和第 0 行之间的 "V" 形里。
b4 球开始放在第 4 列上,会卡在第 2、3 列和第 1 行之间的 "V" 形里。

示例 2:

输入:grid = [[-1]]
输出:[-1]
解释:球被卡在箱子左侧边上。

示例 3:

输入:grid = [[1,1,1,1,1,1],[-1,-1,-1,-1,-1,-1],[1,1,1,1,1,1],[-1,-1,-1,-1,-1,-1]]
输出:[0,1,2,3,4,-1]

 

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 100
  • grid[i][j]1-1

2、解题思路

按题意模拟

3、代码

var findBall = function (grid) {
const res = [], m = grid.length, n = grid[0].length;

for (let j = 0; j < n; j++) {
let k = j;
for (let i = 0; i < m; i++) {
if (grid[i][k] === 1 && grid[i][k] === grid[i][k + 1]) k++;
else if (grid[i][k] === -1 && grid[i][k] === grid[i][k - 1]) k--;
else res[j] = -1;
}
if (res[j] === undefined) res[j] = k;
}

return res;
};

4、执行结果

image.png