1、题干
给你一个下标从 0 开始的整数数组 nums
,其长度是 2
的幂。
对 nums
执行下述算法:
- 设
n
等于nums
的长度,如果n == 1
,终止 算法过程。否则,创建 一个新的整数数组newNums
,新数组长度为n / 2
,下标从 0 开始。 - 对于满足
0 <= i < n / 2
的每个 偶数 下标i
,将newNums[i]
赋值 为min(nums[2 * i], nums[2 * i + 1])
。 - 对于满足
0 <= i < n / 2
的每个 奇数 下标i
,将newNums[i]
赋值 为max(nums[2 * i], nums[2 * i + 1])
。 - 用
newNums
替换nums
。 - 从步骤 1 开始 重复 整个过程。
执行算法后,返回 nums
中剩下的那个数字。
示例 1:
输入:nums = [1,3,5,2,4,8,2,2]
输出:1
解释:重复执行算法会得到下述数组。
第一轮:nums = [1,5,4,2]
第二轮:nums = [1,4]
第三轮:nums = [1]
1 是最后剩下的那个数字,返回 1 。
示例 2:
输入:nums = [3]
输出:3
解释:3 就是最后剩下的数字,返回 3 。
提示:
1 <= nums.length <= 1024
1 <= nums[i] <= 109
nums.length
是2
的幂
2、思路
递归模拟,思路和实现比其他方式相对简单点
3、代码
function minMaxGame(nums: number[]): number {
if (nums.length === 1) return nums[0];
nums = nums.slice(0, nums.length / 2).map((v, i) => {
return (i % 2 ? Math.max : Math.min)(nums[2 * i], nums[2 * i + 1]);
});
return minMaxGame(nums);
};
4、复杂度
- 时间复杂度:
- 空间复杂度: